

DATA NOTE

A chromosomal reference genome sequence for the northern house mosquito, *Culex pipiens* form *pipiens*, Linnaeus, 1758

[version 1; peer review: 2 approved]

Jenny C Hesson^{1,2}, Yuki Haba ^{1,3,4}, Carolyn S McBride ^{1,3}, Edel Sheerin ^{1,5}, Thomas C Mathers⁵, Michael Paulini⁵, Damon-Lee B Pointon ^{1,5}, James W Torrance ^{1,5}, Cibin Sadasivan Baby⁵, Jonathan M.D. Wood ^{1,5}, Wellcome Sanger Institute Scientific Operations: Sequencing Operations, Wellcome Sanger Institute Tree of Life Core Informatics team, Shane A McCarthy ^{1,5,6}, Mara K N Lawniczak ^{1,5}, Alex Makunin ^{1,5}

⁶University of Cambridge Department of Genetics, Cambridge, England, UK

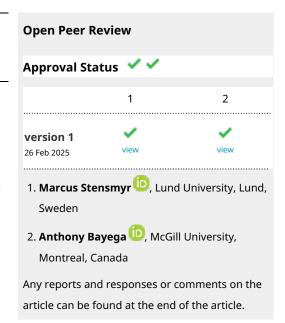
First published: 26 Feb 2025, 10:107

https://doi.org/10.12688/wellcomeopenres.23767.1

Latest published: 26 Feb 2025, 10:107

https://doi.org/10.12688/wellcomeopenres.23767.1

Abstract


We present a genome assembly from an individual female *Culex pipiens* sensu stricto (the northern house mosquito; Arthropoda; Insecta; Diptera; Culicidae), from a wild population in Sweden. The genome sequence is 533 megabases in span. Most of the assembly is scaffolded into three chromosomal pseudomolecules. The complete mitochondrial genome was also assembled and is 15.6 kilobases in length.

Keywords

Culex pipiens, northern house mosquito, genome sequence, chromosomal

This article is included in the Tree of Life gateway.

¹Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden

²Biologisk Myggkontroll, Nedre Dalälvens Utvecklings AB, Gysinge, Sweden

³Princeton University Department of Ecology and Evolutionary Biology, Princeton, New Jersey, USA

⁴Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, USA

⁵Tree of Life, Wellcome Sanger Institute, Hinxton, England, UK

Corresponding authors: Mara K N Lawniczak (mara@sanger.ac.uk), Alex Makunin (am60@sanger.ac.uk)

Author roles: Hesson JC: Investigation; Haba Y: Investigation, Writing – Original Draft Preparation; McBride CS: Investigation, Writing – Original Draft Preparation; Sheerin E: Investigation; Mathers TC: Data Curation; Paulini M: Data Curation; Pointon DLB: Data Curation; Torrance JW: Data Curation; Sadasivan Baby C: Software; Wood JMD: Data Curation; McCarthy SA: Investigation, Methodology; Lawniczak MKN: Conceptualization, Funding Acquisition, Investigation, Supervision, Writing – Review & Editing; Makunin A: Formal Analysis, Methodology, Project Administration, Visualization, Writing – Original Draft Preparation

Competing interests: No competing interests were disclosed.

Grant information: The Wellcome Sanger Institute is funded by the Wellcome Trust (220540), which supports ML and the work presented here. SAM is supported by the Wellcome Trust Grant (WT207492). Y.H. is supported by a Masason Foundation Fellowship, a Honjo International Fellowship, a PIIRS Dissertation Fellowship, and a Centennial Fellowship.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2025 Hesson JC *et al.* This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Hesson JC, Haba Y, McBride CS *et al.* A chromosomal reference genome sequence for the northern house mosquito, *Culex pipiens* form *pipiens*, Linnaeus, 1758 [version 1; peer review: 2 approved] Wellcome Open Research 2025, 10:107 https://doi.org/10.12688/wellcomeopenres.23767.1

First published: 26 Feb 2025, 10:107 https://doi.org/10.12688/wellcomeopenres.23767.1

Species taxonomy

Animalia; Arthropoda; Insecta; Diptera; Culicidae; Culex; *Culex pipiens*; Linnaeus, 1758 (NCBI taxid:7174).

Background

The northern house mosquito *Culex pipiens* (Linnaeus, 1758) is a cosmopolitan species found in temperate zones across both the northern and southern hemispheres. It is a member of the *Culex pipiens* species complex, which also includes the widespread tropical/subtropical species *Cx. quinquefasciatus*, an East Asian species *Cx. pallens*, and two Australian endemics, *Cx. australicus*, and *Cx. globocoxitus* (Vinogradova, 2000). All five species are morphologically similar, often only distinguishable by male genitalia. *Cx. pipiens* forms latitudinal hybrid zones with *Cx. quinquefasciatus* where they come into contact in North America and Asia (Fonseca *et al.*, 2009; Kothera *et al.*, 2009). The only place where the two cosmopolitan species appear able to coexist without hybridization is southern Africa (Cornel *et al.*, 2003).

Cx. pipiens displays surprising ecological diversity. The habits of southern African populations are not well understood, but northern populations comprise two morphologically indistinguishable ecotypes or forms, termed pipiens and molestus (Farajollahi et al., 2011; Haba & McBride, 2022; Vinogradova, 2000). Form pipiens females diapause in winter and primarily bite birds. They represent important bridge vectors of West Nile Virus, a bird virus for which humans are dead-end hosts. Form molestus females breed year-round. They can produce a first clutch of eggs without a blood meal (autogeny) but also readily bite humans and other mammals. Form molestus canonically breeds in urban below ground environments, such as subways, cellars, and cesspits. However, they also thrive above ground in Mediterranean climates, including the Mediterranean basin itself, as well as Argentina and Australia, where they were introduced quite recently (Chevillon et al., 1995; Di Luca et al., 2016; Kassim et al., 2013; Mitchell & Darsie, 1985; Urbanelli et al., 1981). Form molestus served as the primary vector of lymphatic filariasis in Egypt until the pathogen was locally eradicated in the early 2000s (Ramzy et al., 2019).

The abundance and public health importance of Cx. pipiens has led to many genetic studies. Early studies were aimed at distinguishing ecotypes with allozymes and microsatellites (Byrne & Nichols, 1999; Fonseca et al., 2004; Urbanelli et al., 1981). A single-locus PCR assay has also been developed to reliably separate pipiens and molestus at the population (but not individual) level in colder northern latitudes (Bahnck & Fonseca, 2006). Most recently, authors have begun to apply genome-wide markers, such as AFLPs (Gomes et al., 2015), or high throughput sequencing approaches, such as RNAseq and gene-based capture (Aardema et al., 2020; Aardema et al., 2022). Together this work has revealed complex population structure and extensive geographic variation that is still not well understood. Long read chromosome-level assemblies with gene annotations are available for Cx. quinquefasciatus (GCF_015732765.1) (Ryazansky et al., 2024), Cx. pallens (GCF_016801865.2), and

Cx. pipiens f. molestus (GCA_024516115.1) (Liu et al., 2023). Here, we present a chromosomally complete genome sequence for Culex pipiens f. pipiens using a single female specimen collected in diapause (hibernating) in a food-cellar in Uppsala, Sweden.

Genome sequence report

The genome was sequenced from a single female *Culex pipiens* mosquito collected in April 2021 in Uppsala, Sweden (59.75, 17.51). A total of 19-fold coverage per haplotype in Pacific Biosciences single-molecule HiFi long reads (N50 12.609 kb for low input library and 9.222 kb for ultra-low input library) were generated. Primary assembly contigs were scaffolded with chromosome conformation Hi-C data from a female mosquito caught in the same location in April 2021. Manual assembly curation corrected 187 missing joins or misjoins and removed 152 haplotypic duplications, reducing the scaffold number by 75.8% and reducing the assembly size by 19.3%.

The final assembly has a total length of 533 Mb in 29 sequence scaffolds with a scaffold N50 of 190.9 Mb (Table 1). The snail plot in Figure 1 provides a summary of the assembly statistics, while the distribution of assembly scaffolds on GC proportion and coverage is shown in Figure 2. 99.88% of the assembly sequence was assigned to three chromosomal-level scaffolds (Figure 3; Table 2). Chromosomes were numbered and oriented using synteny to the *Culex quinquefasciatus* JHB strain assembly VPISU_Cqui_1.0_pri_paternal (Ryazansky *et al.*, 2024) (accession GCF_015732765.1) (Figure 4). The assembly has a BUSCO 5.3.2 (Simão *et al.*, 2015) completeness of 97.4% using the diptera_odb10 reference set. While not fully phased, the assembly deposited is of one haplotype and also includes the circular mitochondrial genome. Contigs corresponding to the second haplotype have also been deposited.

Chromosome arms, candidate centromere sequences, and the rDNA region were delineated based on the presence of characteristic tandem repeat arrays (Figure 5; Table 3). Candidate centromere regions were represented by complex tandem repeat blocks with significant sequence similarity between all three chromosomes. The largest cluster of rDNA genes was located on chromosome arm 1p between 56.905-57.009 Mbp, some 1.5 Mbp away from the predicted M-locus between 58.9-61.9 Mbp in chromosome 1 of *Cx. quinquefasciatus* (Ryazansky *et al.*, 2024) - interestingly, the majority of predicted M-locus has homologous sequences in our female *Cx. pipiens* assembly.

Methods

Sample acquisition and nucleic acid extraction

Hibernating *Culex pipiens* specimens were collected from Uppsala, Sweden (59.75, 17.51) by Jenny Hesson in April 2021. A single female idCulPipi1 was used for Pacific Bio-Sciences, another female idCulPipi2 was used for Arima Hi-C. Mosquitoes were prepared using the "squish method" (Teltscher & Lawniczak, 2023) and shipped at room temperature in ethanol overnight to the UK.

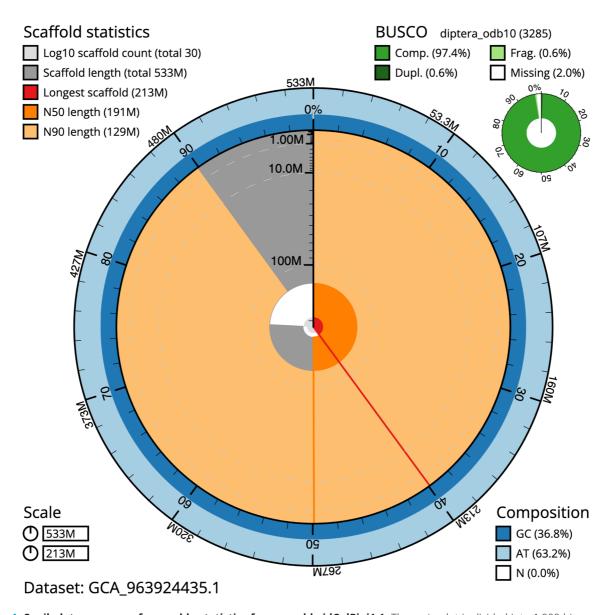
Table 1. Genome data for Culex pipiens, idCulPipi1.1.

Project accession data				
Assembly identifier	idCulPipi1.1			
Species	Culex pipiens			
Specimen	idCulPipi1			
NCBI taxonomy ID	7175			
BioProject	PRJEB67967			
BioSample ID	ERS14890764			
Isolate information	female, whole organism			
Raw data accessions				
PacificBiosciences SEQUEL II	ERR12120034, ERR12120035			
Hi-C Illumina	ERR12411010			
Genome assembly				
Assembly accession	GCA_963924435.1			
Accession of alternate haplotype	GCA_963924485.1			
Span (Mb)	533.2			
Number of contigs	326			
Contig N50 length (Mb)	3.3			
Number of scaffolds	29			
Scaffold N50 length (Mb)	190.9			
Longest scaffold (Mb)	213.1			
BUSCO* genome score	C:97.4%[S:96.8%,D:0.6%], F:0.6%,M:2.0%,n:3285			

^{*} BUSCO scores based on the diptera_odb10 BUSCO set using BUSCO 5.3.2. C=complete [S=single copy, D=duplicated], F=fragmented, M=missing, n=number of orthologues in comparison. A full set of BUSCO scores is available at https://blobtoolkit.genomehubs.org/view/idCulPipi1.1/dataset/GCA_963924435.1/busco.

For high molecular weight (HMW) DNA extraction, one whole female insect (idCulPipi1) was disrupted by manual grinding with a blue plastic pestle in Qiagen MagAttract lysis buffer and then extracted using the Qiagen MagAttract HMW DNA extraction kit with two minor modifications including halving volumes recommended by the manufacturer due to small sample size and running two elution steps of 100 µl each to increase DNA yield (Teltscher et al., 2023). The quality of the DNA was evaluated using an Agilent FemtoPulse to ensure that most DNA molecules were larger than 30 kb, and preferably > 100 kb. The average fragment size for this sample was 200 kb. The DNA yield obtained for this sample was 703 ng. DNA was sheared using a Diagenode Megaruptor 3 as follows: the total volume of the DNA extract was first sheared at speed 30 (low input (LI) library). An aliquot was then removed (54 µL), topped up with Qiagen Elution buffer to a volume of 100 µL and sheared again at

speed 33 (ultra low input (ULI) library). The average fragment size obtained for the LI library and the ULI library were 13.5 kb and 13.6 kb respectively. Sheared DNA was purified using AMPure PB beads with a 0.6X ratio of beads to sample to remove the shorter fragments and concentrate the DNA sample. The concentration and quality of the sheared and purified DNA was assessed using a Nanodrop spectrophotometer and Qubit Fluorometer with the Qubit dsDNA High Sensitivity Assay kit. Fragment size distribution was evaluated by running the sheared and cleaned sample on the FemtoPulse system once more. For the LI library, the average fragment size obtained was 16.5 kb and the DNA yield was 354 ng. For the ULI library, the average fragment size obtained was 13.9 kb and the DNA yield was 125 ng. These libraries lost 50% and 38% of DNA through the process of shearing and SPRI respectively.


For Hi-C data generation, a separate unrelated female mosquito specimen (idCulPipi2) was used as input material for the Arima V2 Kit according to the manufacturer's instructions for animal tissue. This approach of using another individual was taken in order to enable all material from a single specimen to contribute to the PacBio data generation given we were not able to meet the minimum required HMW DNA and also save tissue for Hi-C from a single specimen.

Sequencing

We prepared libraries as per the PacBio procedure and checklist for SMRTbell Libraries using Express TPK 2.0 with low DNA input. Coverage with the single individual low input library was not sufficient so we topped up this library with an Ultra Low Input library using additional DNA from the same mosquito. Sequencing complexes were made using Sequencing Primer v4 and DNA Polymerase v2.0. Sequencing was carried out on the Sequel II system with 24-hour run time and 2-hour pre-extension. For Hi-C data generation, following the Arima HiC V2 reaction, samples were processed through Library Preparation using a NEB Next Ultra II DNA Library Prep Kit and sequenced aiming for 100x depth. Sequencing was performed by the Scientific Operations core at the Wellcome Sanger Institute on Pacific Biosciences SEQUEL II (HiFi), Illumina NovaSeq 6000 (Hi-C).

Genome assembly

The HiFi reads were first assembled using Hifiasm (Cheng et al., 2021) with the --primary option. Haplotypic duplications were identified and removed with purge_dups (Guan et al., 2020). The Hi-C reads were mapped to the primary contigs using bwa-mem2 (Vasimuddin et al., 2019). The contigs were further scaffolded using the provided Hi-C data (Rao et al., 2014) in yahs (Zhou et al., 2023). using the --break option for handling potential misassemblies. The scaffolded assemblies were evaluated using Gfastats (Formenti et al., 2022), BUSCO (Manni et al., 2021) and MERQURY.FK (Rhie et al., 2020). The mitochondrial genome was assembled using MitoHiFi (Uliano-Silva et al., 2021), which performs annotation using MitoFinder (Allio et al., 2020) and uses these annotations to select the final mitochondrial contig and to ensure the general quality of the sequence.

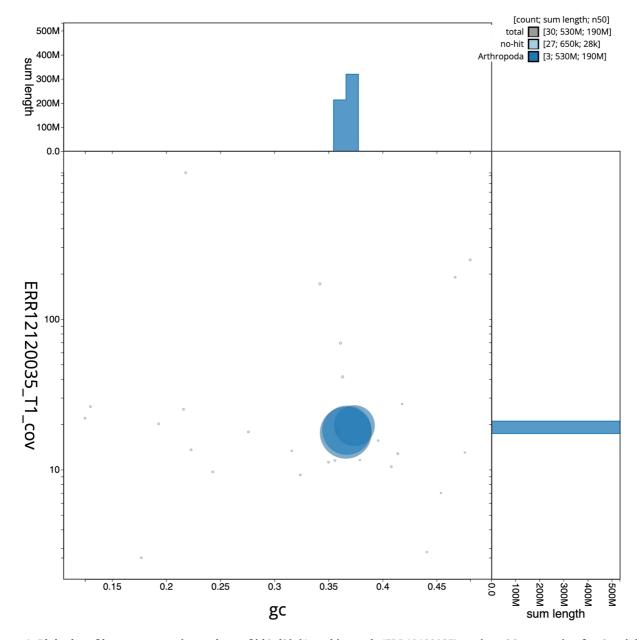


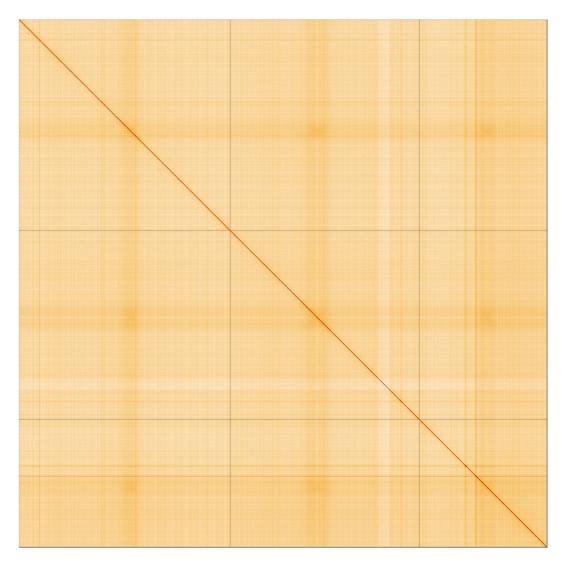
Figure 1. Snail plot summary of assembly statistics for assembly idCulPipi1.1. The main plot is divided into 1,000 bins around the circumference with each bin representing 0.1% of the 533,168,032 bp assembly. The distribution of sequence lengths is shown in dark grey with the plot radius scaled to the longest sequence present in the assembly (213,114,244 bp, shown in red). Orange and pale-orange arcs show the N50 and N90 sequence lengths (190,882,370 and 128,522,754 bp), respectively. The pale grey spiral shows the cumulative sequence count on a log scale with white scale lines showing successive orders of magnitude. The blue and pale-blue area around the outside of the plot shows the distribution of GC, AT and N percentages in the same bins as the inner plot. A summary of complete, fragmented, duplicated and missing BUSCO genes in the diptera_odb10 set is shown in the top right. An interactive version of this figure is available at https://blobtoolkit.genomehubs.org/view/idCulPipi1.1/dataset/GCA_963924435.1/snail.

Assembly curation

The assembly was decontaminated using the Assembly Screen for Cobionts and Contaminants (ASCC) pipeline (article in preparation). Flat files and maps used in curation were generated in TreeVal (Pointon *et al.*, 2023). Manual curation was

primarily conducted using PretextView (Harry, 2022), with additional insights provided by JBrowse2 (Diesh *et al.*, 2023) and HiGlass (Kerpedjiev *et al.*, 2018). Scaffolds were visually inspected and corrected as described by (Howe *et al.*, 2021). Any identified contamination, missed joins, and

Figure 2. Blob plot of base coverage in a subset of idCulPipi1 pacbio reads (ERR12120035) against GC proportion for *Cx. pipiens* **assembly idCulPipi1.** Chromosomes are coloured by phylum. Circles are sized in proportion to chromosome length. Histograms show the distribution of chromosome length sum along each axis. An interactive version of this figure is available at https://blobtoolkit.genomehubs.org/view/idCulPipi1.1/dataset/GCA_963924435.1/blob.


mis-joins were corrected, and duplicate sequences were tagged and removed. The curation process is documented at https://gitlab.com/wtsi-grit/rapid-curation (article in preparation).

Evaluation of final assembly

A HiGlass map was created to show the final assembly. The Hi-C reads are aligned using using bwa-mem2 (Vasimuddin et al., 2019) and the alignment files are combined with

SAMtools (Danecek *et al.*, 2021). The Hi-C alignments are converted into a contact map using BEDTools (Quinlan & Hall, 2010) and the Cooler tool suite (Abdennur & Mirny, 2020). The contact map is visualised in HiGlass (Kerpedjiev *et al.*, 2018).

The blobtoolkit pipeline (Muffato *et al.*, 2024). is a Nextflow (Di Tommaso *et al.*, 2017) port of the previous Snakemake

Figure 3. Hi-C contact map for genome assembly of *Culex pipiens, idCulPipi1.1.* Visualised in HiGlass. Chromosomes order: 2, 3, 1, then remaining scaffolds. The interactive Hi-C map can be viewed at https://genome-note-higlass.tol.sanger.ac.uk/l/?d=Sjyb5raPQzqn3xHqRpD_YQ.

Table 2. Chromosomal pseudomolecules in the genome assembly of *Culex pipiens*, idCulPipi1.1.

INSDC accession	Chromosome	Size (Mb)	Count	Gaps
OZ004311.1	1	128.523	1	92
OZ004312.1	2	213.114	1	98
OZ004313.1	3	190.882	1	106
OZ004314.1	MT	0.016	1	0
	1 Unlocalised	0.053	1	0
	Unplaced	0.580	25	1

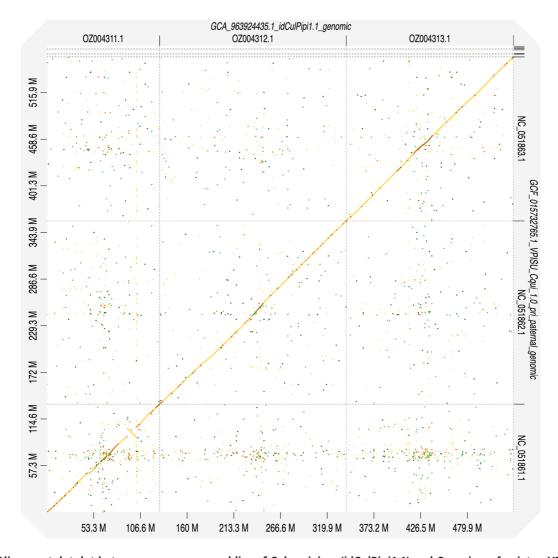
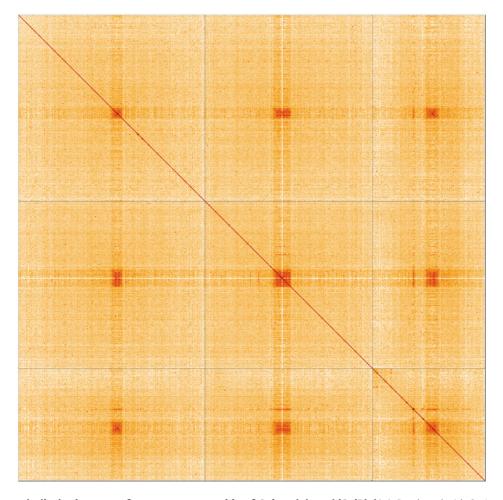


Figure 4. Alignment dotplot between genome assemblies of *Culex pipiens* (idCulPipi1.1) and *Cx. quinquefasciatus*, VPISU_Cqui_ 1.0_pri_paternal (JHB strain). Visualised in DGenies.


Blobtoolkit pipeline (Challis et al., 2020). It aligns the PacBio reads in SAMtools and minimap2 (Li, 2018) and generates coverage tracks for regions of fixed size. In parallel, it queries the GoaT database (Challis et al., 2023) to identify all matching BUSCO lineages to run BUSCO (Manni et al., 2021). For the three domain-level BUSCO lineages, the pipeline aligns the BUSCO genes to the UniProt Reference Proteomes database (UniProt Consortium, 2023) with DIAMOND blastp (Buchfink et al., 2021). The genome is also divided into chunks according to the density of the BUSCO genes from the closest taxonomic lineage, and each chunk is aligned to the UniProt Reference Proteomes database using DIAMOND blastx. Genome sequences without a hit are chunked using seqtk and aligned to the NT database with blastn (Altschul et al., 1990). The blobtools suite combines all these outputs into a blobdir for visualisation.

The genome assembly and evaluation pipelines were developed using nf-core tooling (Ewels *et al.*, 2020) and MultiQC (Ewels *et al.*, 2016), relying on the Conda package manager, the Bioconda initiative (Grüning *et al.*, 2018), the Biocontainers infrastructure (da Veiga Leprevost *et al.*, 2017), as well as the Docker (Merkel, 2014) and Singularity (Kurtzer *et al.*, 2017) containerisation solutions.

Table 4 contains a list of all software tool versions used, where appropriate.

Ethics/compliance issues

The genetic resources accessed and utilised under this project were done so in accordance with the UK ABS legislation (Nagoya Protocol (Compliance) (Amendment) (EU Exit) Regulations 2018 (SI 2018/1393)) and the national

Figure 5. Sequence similarity heatmap for genome assembly of *Culex pipiens, idCulPipi1.1.* Produced with StainedGlass, visualised in HiGlass. Chromosomes order: 2, 3, 1 - followed by the remaining scaffolds. Darker colours represent higher sequence similarity, notably at pericentric heterochromatin.

 $\begin{tabular}{ll} \textbf{Table 3.} Chromosome arms in the genome assembly of $\textit{Culex pipiens}$, idCulPipi1.1. \end{tabular}$

Chromosome	Start	End	Chromosome arm
1	1	68,424,560	1p
1	68,488,620	128,522,754	1q
2	1	112,539,609	2p
2	113,453,184	213,114,244	2q
3	1	87,925,989	3р
3	88,082,842	190,882,370	3q

Table 4. Software tools used.

Software tool	Version	Source
BEDTools	2.30.0	https://github.com/arq5x/bedtools2
BLAST	2.14.0	ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/
BlobToolKit	4.3.7	https://github.com/blobtoolkit/blobtoolkit
BUSCO	5.4.3 and 5.5.0	https://gitlab.com/ezlab/busco
bwa-mem2	2.2.1	https://github.com/bwa-mem2/bwa-mem2
Cooler	0.8.11	https://github.com/open2c/cooler
D-GENIES	1.4	https://github.com/genotoul-bioinfo/dgenies
DIAMOND	2.1.8	https://github.com/bbuchfink/diamond
fasta_windows	0.2.4	https://github.com/tolkit/fasta_windows
FastK	427104ea91c78c3b8b8b49f1a7d6bbeaa869ba1c	https://github.com/thegenemyers/FASTK
Gfastats	1.3.6	https://github.com/vgl-hub/gfastats
GoaT CLI	0.2.5	https://github.com/genomehubs/goat-cli
Hifiasm	0.19.5-r587	https://github.com/chhylp123/hifiasm
HiGlass	1.11.6	https://github.com/higlass/higlass
Merqury.FK	d00d98157618f4e8d1a9190026b19b471055b22e	https://github.com/thegenemyers/MERQURY.FK
minimap2	2.24	https://github.com/lh3/minimap2
MitoHiFi	2	https://github.com/marcelauliano/MitoHiFi
MultiQC	1.14, 1.17, and 1.18	https://github.com/MultiQC/MultiQC
NCBI Datasets	15.12.0	https://github.com/ncbi/datasets
Nextflow	23.04.0-5857	https://github.com/nextflow-io/nextflow
PretextView	0.2.5	https://github.com/sanger-tol/PretextView
purge_dups	1.2.5	https://github.com/dfguan/purge_dups
samtools	1.16.1, 1.17, and 1.18	https://github.com/samtools/samtools
sanger-tol/ascc	-	https://github.com/sanger-tol/ascc
sanger-tol/blobtoolkit	0.6.0	https://github.com/sanger-tol/blobtoolkit
Seqtk	1.3	https://github.com/lh3/seqtk
Singularity	3.9.0	https://github.com/sylabs/singularity
StainedGlass	0.5	https://github.com/mrvollger/StainedGlass
TreeVal	1.0.0	https://github.com/sanger-tol/treeval
YaHS	1.2a.2	https://github.com/c-zhou/yahs

ABS legislation within the country of origin, where applicable.

Data availability

European Nucleotide Archive: *Culex pipiens* genome assembly, idCulPipi1. Accession number PRJEB67967; https://identifiers.org/bioproject/PRJEB67967. The genome sequence is

released openly for reuse. All raw sequence data and the assembly have been deposited in INSDC databases. Raw data and assembly accession identifiers are reported in Table 1.

Author information

Members of the Sanger Scientific Operations: DNA Pipelines collective are listed here: https://doi.org/10.5281/zenodo.4790456.

References

Aardema ML, Campana MG, Wagner NE, et al.: A gene-based capture assay for surveying patterns of genetic diversity and insecticide resistance in a worldwide group of invasive mosquitoes. PLoS Negl Trop Dis. 2022; 16(8): e0010689

PubMed Abstract | Publisher Full Text | Free Full Text

Aardema ML, vonHoldt BM, Fritz ML, et al.: Global evaluation of taxonomic relationships and admixture within the *Culex pipiens* complex of mosquitoes. *Parasit Vectors*. 2020; **13**(1): 8.

PubMed Abstract | Publisher Full Text | Free Full Text

Abdennur N, Mirny LA: Cooler: scalable storage for Hi-C data and other genomically labeled arrays. *Bioinformatics*. 2020; **36**(1): 311–316. PubMed Abstract | Publisher Full Text | Free Full Text

Allio R, Schomaker-Bastos A, Romiguier J, et al.: MitoFinder: efficient automated large-scale extraction of mitogenomic data in target enrichment phylogenomics. Mol Ecol Resour. 2020; 20(4): 892-905. PubMed Abstract | Publisher Full Text | Free Full Text

Altschul SF, Gish W, Miller W, et al.: Basic local alignment search tool. J Mol Biol. 1990; 215(3): 403-410.

PubMed Abstract | Publisher Full Text

Bahnck CM, Fonseca DM: Rapid assay to identify the two genetic forms of Culex (Culex) pipiens L. (Diptera: Culicidae) and hybrid populations. Am J Trop Med Hyg. 2006; **75**(2): 251–55. **PubMed Abstract** | **Publisher Full Text**

Buchfink B, Reuter K, Drost HG: Sensitive protein alignments at Tree-of-Life scale using DIAMOND. *Nat Methods*. 2021; **18**(4): 366–368. PubMed Abstract | Publisher Full Text | Free Full Text

Byrne K, Nichols RA: Culex pipiens in London underground tunnels: differentiation between surface and subterranean populations. *Heredity (Edinb).* 1999; **82**(Pt 1): 7–15.

PubMed Abstract | Publisher Full Text

Challis R, Kumar S, Sotero-Caio C, et al.: Genomes on a Tree (GoaT): a versatile, scalable search engine for genomic and sequencing project metadata across the eukaryotic Tree of Life [version 1; peer review: 2 approved]. Wellcome Open Res. 2023; 8: 24.
PubMed Abstract | Publisher Full Text | Free Full Text

Challis R, Richards E, Rajan J, et al.: BlobToolKit - interactive quality assessment of genome assemblies. G3 (Bethesda). 2020; 10(4): 1361-1374. PubMed Abstract | Publisher Full Text | Free Full Text

Cheng H, Concepcion GT, Feng X, et al.: Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat Methods. 2021; 18(2):

PubMed Abstract | Publisher Full Text | Free Full Text

Chevillon C, Eritja R, Pasteur N, et al.: Commensalism, adaptation and gene flow: mosquitoes of the Culex pipiens complex in different habitats. Genet Res. 1995; 66(2): 147-57.

PubMed Abstract | Publisher Full Text

Cornel AJ, McAbee RD, Rasgon J, et al.: Differences in extent of genetic introgression between sympatric *Culex pipiens* and *Culex quinquefasciatus* (Diptera: Culicidae) in California and South Africa. *J Med Entomol.* 2003; 40(1):

PubMed Abstract | Publisher Full Text

da Veiga Leprevost F, Grüning BA, Aflitos SA, et al.: BioContainers: an opensource and community-driven framework for software standardization. Bioinformatics. 2017; 33(16): 2580-82.

PubMed Abstract | Publisher Full Text | Free Full Text

Danecek P, Bonfield JK, Liddle J, et al.: Twelve years of SAMtools and BCFtools. GigaScience. 2021; 10(2): giab008.

PubMed Abstract | Publisher Full Text | Free Full Text

Diesh C, Stevens GJ, Xie P, et al.: JBrowse 2: a modular genome browser with views of synteny and structural variation. Genome Biol. 2023; 24(1): 74. PubMed Abstract | Publisher Full Text | Free Full Text

Di Luca M, Toma L, Boccolini D, et al.: Ecological distribution and CQ11 genetic structure of Culex pipiens complex (Diptera: Culicidae) in Italy. PLoS One. 2016; 11(1): e0146476.

PubMed Abstract | Publisher Full Text | Free Full Text

Di Tommaso P, Chatzou M, Floden EW, et al.: **Nextflow enables reproducible computational workflows**. *Nat Biotechnol*. 2017; **35**(4): 316–19.

PubMed Abstract | Publisher Full Text

Ewels P, Magnusson M, Lundin S, et al.: Multiqc: summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 2016;

PubMed Abstract | Publisher Full Text | Free Full Text

Ewels PA, Peltzer A, Fillinger S, et al.: The nf-core framework for communitycurated bioinformatics pipelines. Nat Biotechnol. 2020; 38(3): 276-278. **PubMed Abstract | Publisher Full Text**

Farajollahi A, Fonseca DM, Kramer LD, et al.: "Bird biting" mosquitoes and human disease: a review of the role of *Culex pipiens* complex mosquitoes in epidemiology. Infect Genet Evol. 2011; 11(7): 1577–85. PubMed Abstract | Publisher Full Text | Free Full Text

Fonseca DM, Keyghobadi N, Malcolm CA, et al.: Emerging vectors in the Culex

pipiens complex. Science. 2004; 303(5663): 1535-38.

PubMed Abstract | Publisher Full Text

Fonseca DM, Smith JL, Kim HC, et al.: Population Genetics of the Mosquito Culex pipiens pallens reveals sex-linked asymmetric introgression by Culex quinquefasciatus. Infect Genet Evol. 2009; 9(6): 1197–1203.

PubMed Abstract | Publisher Full Text | Free Full Text

Formenti G, Abueg L, Brajuka A, et al.: Gfastats: conversion, evaluation and manipulation of genome sequences using assembly graphs. Bioinformatics. 2022; 38(17): 4214-16.

PubMed Abstract | Publisher Full Text | Free Full Text

Gomes B, Wilding CS, Weetman D, et al.: Limited genomic divergence between intraspecific forms of Culex pipiens under different ecological pressures. BMC Evol Biol. 2015; 15(1): 197

PubMed Abstract | Publisher Full Text | Free Full Text

Grüning B, Dale R, Sjödin A, et al.: Bioconda: sustainable and comprehensive software distribution for the life sciences. Nat Methods. 2018; 15(7)

PubMed Abstract | Publisher Full Text | Free Full Text

Guan D, McCarthy SA, Wood J, et al.: Identifying and removing haplotypic duplication in primary genome assemblies. Bioinformatics. 2020; 36(9) 2896-2898

PubMed Abstract | Publisher Full Text | Free Full Text

Haba Y, McBride L: Origin and status of Culex pipiens mosquito ecotypes. Curr Biol. 2022; 32(5): R237-46.

PubMed Abstract | Publisher Full Text | Free Full Text

Harry E: PretextView (Paired REad TEXTure Viewer): a desktop application for viewing pretext contact maps. 2022.

Howe K, Chow W, Collins J, $\it et~al.$: Significantly improving the quality of genome assemblies through curation. GigaScience. 2021; 10(1): giaa153. PubMed Abstract | Publisher Full Text | Free Full Text

Kassim NFA, Webb CE, Wang *Q, et al.*: Australian distribution, genetic status and seasonal abundance of the exotic mosquito *Culex molestus* (Forskal) (Diptera: Culicidae). Aust J Entomol. 2013; **52**(3): 185–98. **Publisher Full Text**

Kerpedijev P. Abdennur N. Lekschas F. et al.: HiGlass: web-based visual exploration and analysis of genome interaction maps. Genome Biol. 2018;

PubMed Abstract | Publisher Full Text | Free Full Text

Kothera L, Zimmerman EM, Richards CM, et al.: Microsatellite characterization of subspecies and their hybrids in Culex pipiens complex (Diptera: Culicidae) mosquitoes along a North-South transect in the central United States. *J Med Entomol.* 2009; **46**(2): 236–48. PubMed Abstract | Publisher Full Text

Kurtzer GM, Sochat V, Bauer MW: **Singularity: scientific containers for mobility of compute.** *PLoS One.* 2017; **12**(5): e0177459. **PubMed Abstract | Publisher Full Text | Free Full Text**

Li H: Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics*. 2018; **34**(18): 3094–3100.

PubMed Abstract | Publisher Full Text | Free Full Text Liu W, Cheng P, An S, et al.: Chromosome-level assembly of Culex pipiens

molestus and improved reference genome of Culex pipiens pallens (Culicidae, Diptera). Mol Ecol Resour. 2023; 23(2): 486–498. PubMed Abstract | Publisher Full Text

Manni M, Berkeley MR, Seppey M, et al.: BUSCO: assessing genomic data quality and beyond. Curr Protoc. 2021; 1(12): e323.

PubMed Abstract | Publisher Full Text

Merkel D: Docker: lightweight Linux containers for consistent development and deployment. seltzer.com. 2014.

Mitchell CJ, Darsie RF Jr: Mosquitoes of Argentina part ii. geographic distribution and bibliography (Diptera, Culicidae). Mosquito Systematics. 1985; **17**(4): 279-360.

Reference Source

Muffato M, Butt Z, Challis R, et al.: Sanger-Tol/blobtoolkit: v0.3.0 - Poliwag. Zenodo. 2024

Publisher Full Text

Pointon DL, Eagles W, Sims Y, et al.: sanger-tol/treeval v1.0.0 - Ancient Atlantis. 2023.

Publisher Full Text

Quinlan AR, Hall IM: BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010; 26(6): 841-842. PubMed Abstract | Publisher Full Text | Free Full Text

Ramzy RMR, Kamal HA, Hassan MA, et al.: Elimination of lymphatic filariasis as a public health problem from the Arab Republic of Egypt. Acta Trop. 2019; 199: 105121. PubMed Abstract | Publisher Full Text

Rao SSP, Huntley MH, Durand NC, et al.: A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell. 2014; **159**(7): 1665-1680.

PubMed Abstract | Publisher Full Text | Free Full Text

Rhie A, Walenz BP, Koren S, et al.: Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies. Genome Biol. 2020; 21(1): 245

PubMed Abstract | Publisher Full Text | Free Full Text

Ryazansky SS, Chen C, Potters M, et al.: The chromosome-scale genome assembly for the West Nile vector Culex quinquefasciatus uncovers patterns of genome evolution in mosquitoes. BMC Biol. 2024; 22(1): 16. PubMed Abstract | Publisher Full Text | Free Full Text

Simão FA, Waterhouse RM, Ioannidis P, et al.: BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015; 31(19): 3210-12.

PubMed Abstract | Publisher Full Text

Teltscher F, Johnson H, Lawniczak M: Manual extraction of High Molecular Weight DNA from single mosquitoes using the Qiagen Magattract HMW DNA Kit. September, 2023. Reference Source

 $\label{thm:continuous} Teltscher F, Lawniczak \, M: \textbf{Squishing insects for preservation of HMW DNA in the Field.} \\$

Reference Source

Uliano-Silva M, Ferreira Nunes JG, Krasheninnikova K, et al.: marcelauliano/MitoHiFi: mitohifi_v2.0. 2021.

Publisher Full Text

UniProt Consortium: UniProt: the universal protein knowledgebase in 2023. Nucleic Acids Res. 2023; 51(D1): D523-31.

PubMed Abstract | Publisher Full Text | Free Full Text

Urbanelli S, Cianchi R, Petrarca V, et al.: Adattamento all'ambiente urbano nella zanzara Culex Pipiens (Diptera, Culicidae). In: Ecologia Atti I Congressi Nazionali S. It. E.,. edited by Moroni, A., Ravera, O. and Anelli, A., Zara. 1981; 305–16. **Reference Source**

Vasimuddin M, Misra S, Li H, et al.: Efficient architecture-aware acceleration of BWA-MEM for multicore systems. In: 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2019; 314–324. **Publisher Full Text**

Vinogradova EB: Culex pipiens pipiens mosquitoes: taxonomy, distribution, ecology, physiology, genetics, applied importance and control. Pensoft Series Parasitologica, no. 2. Sofia, Bulgaria: Pensoft, 2000.

Reference Source

Zhou C, McCarthy SA, Durbin R: YaHS: yet another Hi-C scaffolding tool. Bioinformatics. 2023; 39(1): btac808.

PubMed Abstract | Publisher Full Text | Free Full Text

Open Peer Review

Current Peer Review Status:

Version 1

Reviewer Report 19 March 2025

https://doi.org/10.21956/wellcomeopenres.26215.r119683

© 2025 Bayega A. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Anthony Bayega 🗓

McGill University, Montreal, Canada

Hesson et al. provide a chromosomal-level genome assembly of *Culex pipiens* form *pipiens*. I commend them for their efforts. My comments follow below:

- 1. In Figure 3, the label on the Y-axis which reads "ERR1..." could be changed to something more informative to help the reader make sense of this figure.
- 2. It is commendable that the group has attempted to decontaminate the assembly of Cobionts.

Overall, the authors provide a high-quality genome and also assign 99.88% of it to chromosomes. Although much work remains to order the scaffolds, fully phase the contigs and scaffolds, and complete the gaps and also structurally and functionally annotate the genome, the current work will indeed be valuable to the whole community. I therefore recommend the indexing of this genome so that this resource becomes widely accessible to the scientific community.

Is the rationale for creating the dataset(s) clearly described?

Are the protocols appropriate and is the work technically sound?

Are sufficient details of methods and materials provided to allow replication by others?

Are the datasets clearly presented in a useable and accessible format?

Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Genomics and genetics

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 13 March 2025

https://doi.org/10.21956/wellcomeopenres.26215.r119677

© 2025 Stensmyr M. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Marcus Stensmyr 🗓

Lund University, Lund, Sweden

A chromosome length assembly of the northern house mosquito genome is a most welcome addition to the field. The genome is 533MB in length, assembled into three main scaffolds (plus the mitochondrial genome), and is 97.4% complete. The genome has been sequenced and assembled using state-of-the-art methods. It would have been even better if the authors had included annotation of the genome, which I'm a bit surprised is missing.

Is the rationale for creating the dataset(s) clearly described?

Are the protocols appropriate and is the work technically sound?

Yes

Are sufficient details of methods and materials provided to allow replication by others? Yes

Are the datasets clearly presented in a useable and accessible format? Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Diptera neurogenetics and genomics

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.